Carbohydrate RESEARCH

Carbohydrate Research 343 (2008) 2083-2093

Assessment of synthetic methods for the preparation of N- β -D-glucopyranosyl-N'-substituted ureas, -thioureas and related compounds

László Somsák,* Nóra Felföldi, Bálint Kónya, Csaba Hüse, Katalin Telepó, Éva Bokor and Katalin Czifrák

Department of Organic Chemistry, University of Debrecen, PO Box 20, H-4010 Debrecen, Hungary
Received 21 September 2007; received in revised form 24 January 2008; accepted 29 January 2008
Available online 7 February 2008

Presented at Eurocarb 14th Lübeck, Germany, September 2007

Abstract—Preparation of O-peracetylated N-β-D-glucopyranosyl-N-acyl urea derivatives resulted in the formation of anomeric mixtures under the following conditions: acylation of O-peracetylated β-D-glucopyranosyl urea by acyl chlorides in the presence of ZnCl₂ in refluxing CHCl₃; addition of O-peracetylated β-D-glucopyranosylamine to acyl isocyanates in acetonitrile at rt; addition of carboxamides to in situ prepared O-peracetylated β-D-glucopyranosyl isocyanate in refluxing toluene. Deprotection of O-peracetylated N-β-D-glucopyranosyl-N-acyl ureas either under base (NaOMe in MeOH at or below rt) or under acid (KHSO₄ or AcCl in MeOH at rt) catalyzed transesterification conditions resulted in unavoidable partial cleavage of the N-acyl moieties. Reaction of β-D-glucopyranosylammonium carbamate with an isocyanate, isothiocyanate or isoselenocyanate in dry pyridine at rt appears as a general method for the preparation of the corresponding β-D-glucopyranosyl ureas, -thio- and -selenoureas, respectively, inclusive N-acyl derivatives.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Glucosylurea; Acyl urea; Thiourea; Selenourea

1. Introduction

Inhibition of human liver glycogen phosphorylase is under extensive study with the hope to provide a potential new therapy for type 2 diabetes mellitus. The most populated class of inhibitors comprises glucose derivatives^{1,2} most of which bind at the catalytic site as evidenced by X-ray crystallography.³

The first potent glucose analogue inhibitors of rabbit muscle glycogen phosphorylase b (RMGPb) were some N-acyl- β -D-glucopyranosylamines I (Chart 1). Later, it was demo- nstrated that the elongation of the aglycon especially with another NHCO moiety as in N- β -D-glucopyranosyl-N-acyl ureas III together with the presence

of a large aromatic group (R = 2-naphthyl) rendered these inhibitors into the nanomolar range. In this paper, we summarize our experience in the preparation of N- β -D-glucopyranosyl-N'-acyl urea derivatives, and propose a simple way for the synthesis of N- β -D-glucopyranosyl-N'-substituted ureas **II** and **III** as well as some thio and seleno analogues, which were needed to establish structure–activity relationships. The enzymatic and structural studies will be published elsewhere. 7,8

2. Results and discussion

The first acyl ureas III (R = Me, Ph) tested as inhibitors of GP were those for which the O-peracetylated derivatives were known in the literature. For the preparation of other derivatives, acylation of urea 1^{10} by $ZnCl_2$

^{*}Corresponding author. Tel.: +36 52 512 900; fax: + 36 52 453 836; e-mail: somsak@tigris.unideb.hu

Chart 1. Some representative inhibitors of rabbit muscle glycogen phosphorylase. 4,5

catalyzed reaction of the corresponding acyl chlorides to give 3 was investigated first^{7,8} (Scheme 1, Table 1, Route a). In most of these reactions formation of an anomeric mixture was observed, the separation of which by silica gel column chromatography allowed only the β -anomers to be isolated in low yields because of the very similar mobilities of the isomers. From a larger scale preparation of the 2-naphthoyl urea, it was possible to isolate a small amount of the α -anomer α -3m, which was unambigously characterized by MS and NMR methods (see Section 3). To avoid the formation of the undesired by-product, glucopyranosylamine 5 was reacted with

RO NH2 1 R = Ac
2 R = H

RO OR NH2 2 R = H

$$\begin{array}{c}
ACO \\
AC$$

Scheme 1. Reagents and conditions: (a) R'-COCl, ZnCl₂, CHCl₃, reflux; (b) deprotection, see text; (c) R'-CONCO, CH₃CN, Ar, rt; (d) R'-CONH₂, PhCH₃, reflux; (e) (Cl₃CO)₂CO, NaHCO₃, CH₂Cl₂, water. rt.

acyl isocyanates (Route c) obtained from acyl chlorides with NaOCN catalyzed by SnCl₄. ¹¹ In these reactions, too, anomerization was observed in several cases (although, we speculate, probably to a lesser extent as revealed by the higher isolated yields for the β-anomers; compare Routes a and c for 3h and 3i). Reactions of the prepared glucopyranosyl isocyanate¹² 6 with carboxamides (Route d) also gave anomeric mixtures from which the β-anomers of **3h** and **3i** could be isolated in satisfactory yields together with some α -3h and α -3i. At first sight, these anomerizations were surprising since N-acylated glycosylamines and similar derivatives were considered to be configurationally stable (precisely, more stable than glycosylamines). 13 However, it was pointed out that glycosyl ureas underwent both acid- and basecatalyzed anomerization. 14 Loss of anomeric configurational integrity was also reported for an O-perbenzylated glucosyl urea under slightly acidic conditions, 15 and for glucosyl thioureas under slightly basic Zemplén deacetylation conditions. 16 Anomerizations of glycosyl ureas and -carbamates were also observed during formation of glycosyl isocyanates to be reacted with amines.¹⁷ In the light of these literature reports, our observations may be unravelled. The Lewis acidic ZnCl₂ may not only activate acid chlorides but can also catalyze iminium ion formation^{13,18} and, thereby, anomerization in the reactions of 1. During the addition of 5 to acyl isocyanates, the glucosylamine itself may anomerize, but even traces of it may act as basic catalysts for the anomerization of the formed ureas. The most difficult is to understand the reaction of 6 with carboxamides because the latter are probably neither acidic nor basic enough to elicit anomerization; since 6 was not purified but used as the crude product of the transformation of 5, some unreacted glucosylamine might have remained in the mixture to act as a basic catalyst for the anomerization.

Deprotection of compound 3 was complicated by the propensity of the acyl urea moiety towards splitting off the acyl part. Thus, deacetylation under Zemplén conditions at or below room temperature in most cases gave 4 together with 2 within 0.5–1 h. Acid catalyzed transesterification either by using KHSO₄ or by using a catalytic amount of AcCl in MeOH slowed down the reaction to 5–12 days, and thus it became easier to follow the transformation by TLC and to detect the optimal time to get the highest yield for 4. However, even in these reactions, the formation of 2 was to be observed.

Because of the above difficulties, we sought for a more simple and direct way of preparation of the target N-(β -D-glucopyranosyl)-N-acyl ureas **4**. The choice of reacting glucopyranosylamines with acyl isocyanates seemed straightforward, since the feasibility of analogous reactions with iso(thio)cyanates had been demonstrated. However, glycosylamines 13 are available

	R' in 3	Route a		Route c		Route d	
		Observed	Isolated	Observed	Isolated	Observed	Isolated
a	c-C ₆ H ₁₁	β	40% β				
b	$4-NO_2-C_6H_4$	αβ	60% β	β	65% β		
c	$4-Cl-C_6H_4$			β	67% β		
d	$3-Cl-C_6H_4$			β	90% β		
e	$4-AcO-C_6H_4$	β	72% β	αβ	20% β		
f	$4-Ph-C_6H_4$	αβ	43% β				
g	$4-Me-C_6H_4$	αβ	34% β				
h	$4-tBu-C_6H_4$	αβ	36% β	αβ	40% β	αβ	51% β 10% α
i	$4-CF_3-C_6H_4$	αβ	Failed	αβ	40% β	αβ	69% β 9% α
j	PhCH ₂	β	57% β				
k	Ph ₂ CH	αβ	14% β				
l	1-Naphthyl	β	73% β				
m	2-Naphthyl	άβ	32% β 1% α				
n	2-Indolyl	β	41% β				
0	2-Pyridyl	άβ	47% β				

Table 1. Preparation of N-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-N'-acyl ureas 3 by methods indicated in Scheme 1^{7,8}

by rather lengthy and laborious methods involving, for example, several days or even weeks reaction time, the need for large amounts of reagents, evaporating large volumes of water, using ion exchange and lyophilization. 18,21,22 On the other hand, these compounds can be obtained by a recent new method $^{23-25}$ in which the monosaccharide is reacted with ammonium carbamate in methanol, and the glycosylammonium carbamate crystals can be isolated by a simple filtration after 1 day. Thus, β -D-glucopyranosylammonium carbamate (8) was obtained from D-glucose (7) in 91% yield (Scheme 2) and the salt could be stored in a refrigerator for at least one month.

Although the liberation of the free glucopyranosylamine from the carbamate salt was feasible,²³ the more simple direct use of the salt was envisaged (N-bromoacetylation of the salt was reported²⁶). To this end, the reaction of **8** with phenyl isocyanate was investigated in several solvents such as MeOH, acetone, MeOH–Py, acetone–Py and MeOH–Et₃N at rt but satisfactory conversion was to be observed only in dry pyridine.

Therefore, reactions of 8 with a series of cyanates and thiocyanates were performed in pyridine at rt to give 9 and 10, respectively (Table 2). For these reactions, the acvl isocyanates were obtained by oxalyl chloride from the corresponding carboxamides.²⁷ It has to be noted that the conversions were not complete even after rather long (1 week) reaction times. The yields refer to the amount of the starting carbamate salt 8 without taking into account the incomplete conversion because recovery of 8 was not reasonable. Thus, the real yields must be higher than those given in Table 2. Some thioureas (10a,b,f,i,k) were obtained by the reaction of acetylated glucopyranosylamine 12 with the corresponding isothiocyanates to give 13a,b,f,i,k, which were deprotected by the Zemplén protocol to give the corresponding compounds 10.

Carbamate salt **8** was also reacted with phenyl isoselenocyanate to give selenourea **11**²⁸ in 65% yield (again without taking into account the incomplete conversion of **8**) exhibiting spectral data identical with the reported ones.

Scheme 2. Reagents and conditions: (a) NH₄O₂CNH₂ (4 equiv), abs MeOH, 37 °C, 1 day; (b) R–NCX, abs pyridine, rt; (c) R–NCS, CH₂Cl₂, rt; (d) NaOMe, MeOH, rt.

Table 2. N-(β-D-glucopyranosyl)-N'-substituted ureas 9 and -thioureas 10 prepared from carbamate salt 8

	R	9		10	
		Reaction time (day)	Yield (%)	Reaction time (day)	Yield (%)
a	C_6H_5	3	60		86 from 12
b	$2-Cl-C_6H_4$	1	53	5	64 from 8
					20 from 12
c	$3-Cl-C_6H_4$	3	42		
d	4-Cl-C ₆ H ₄	1	54		
e	$2-F-C_6H_4$	1	76		
f	$4-F-C_6H_4$				20 from 8
					97 from 12
g	4 -Br $-C_6H_4$	2	70		
h	$4-NO_2-C_6H_4$	1	76		
i	4-MeO–C ₆ H ₄	2	63	8	44 from 12
j	$3-CF_3-C_6H_4$	3	46		
k	$4-CF_3-C_6H_4$				98 from 12
1	$3-CN-C_6H_4$	3	45		
m	$C_{10}H_7$ (1-naphthyl)	3	45		
n	$C_{10}H_7$ (2-naphthyl)	3	42		
0	C ₁₀ H ₇ CO (2-naphthyl) ^a	3	60		
р	$4-tBu-C_6H_4CO^b$	5	19		

^a **90** corresponds to **4** ($R = C_{10}H_7$, 2-naphthyl).

In conclusion, the easy availability of glucopyranosylammonium carbamate allowed the preparation of N-(β -D-glucopyranosyl)-N'-substituted ureas, -thioureas and a selenourea in two steps from D-glucose. Thus, the synthesis of the highly efficient glycogen phosphorylase inhibitors N-(β -D-glucopyranosyl)-N'-acyl ureas has been significantly improved facilitating further structure—activity studies.

3. Experimental

3.1. General methods

Melting points were measured in open capillary tubes or on a Kofler hot-stage and are uncorrected. Optical rotations were determined with a Perkin-Elmer 241 polarimeter at room temperature. NMR spectra were recorded with BRUKER 360 (360/90 MHz for $^{1}H/^{13}C$) or Avance DRX 500 (500/125 MHz for ¹H/¹³C) spectrometers. Chemical shifts are referenced to Me₄Si (¹H), or to the residual solvent signals (13C). TLC was performed on DC-Alurolle Kieselgel 60 F₂₅₄ (Merck), and the plates were visualized under UV light and by gentle heating. For column chromatography, Kieselgel 60 (Merck, particle size 0.063-0.200 mm) was used. Organic solutions were dried over anhydrous MgSO₄ and concentrated under diminished pressure at 40-50 °C (water bath). Aryl isocyanates and -isothiocyanates were purchased from Aldrich or prepared from the corresponding amines, 12 acyl isocyanates²⁷ and phenyl isoselenocyanate²⁸ obtained by the literature methods.

3.2. General procedure I for the preparation of N-β-D-glucopyranosyl-N'-aryl or acyl ureas 9 and -thioureas 10

Carbamate salt **8** was dissolved in dry pyridine (10 mg/2 mL) containing molecular sieves (3 Å), then 1–2 equiv of the corresponding isocyanate, isothiocyanate or acyl isocyanate was added in one portion. The reaction mixture was stirred at rt and monitored by TLC (7:3 or 1:1 CHCl₃–MeOH). When TLC showed no more change (conversions were incomplete), the solvent was evaporated. The obtained crude mixture was purified by column chromatography.

3.3. General procedure II for the preparation of N-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-N-aryl thioureas 12

2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosylamine²⁹ (5) was dissolved and stirred in dry CH_2Cl_2 (1 g/20 mL) containing molecular sieves (3 Å). After 20 min, 1–1.5 equiv aryl isothiocyanate was added. The mixture was stirred at rt for 1–10 days (TLC, 1:1 EtOAchexane). After completion of the reaction, the mixture was filtered over a Celite pad and the solvent evaporated. The residue was purified by crystallization or column chromatography.

3.4. General procedure III for the Zemplén-deacetylation

To a soln of an O-acetyl protected compound in dry MeOH (0.10 g/5 mL), 1–2 drops of a \sim 1 M methanolic NaOMe soln were added, and the reaction mixture was kept at rt until completion of the transformation (TLC,

^b **9p** corresponds to **4** ($R = 4-tBu-C_6H_4$).

1:1 or 7:3 CHCl₃–MeOH). Amberlyst 15 (H⁺ form) was then added to remove sodium ions, the resin was filtered off and the solvent removed. If the residue was chromatographically not uniform, it was purified by column chromatography or crystallization.

3.4.1. N-(2,3,4,6-Tetra-O-acetyl-β- and α-D-glucopyranosyl)-N'-(4-tert-butylbenzoyl)urea (3h and α -3h). 2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosylamine²⁹ (5, 50 mg. 0.14 mmol) was transformed into the corresponding isocyanate 6 according to the literature method, ¹² and this was boiled in dry toluene with 4-tert-butylbenzamide (51 mg, 0.28 mmol) for 1 day. The solvent was then removed and the residue purified by column chromatography (1:5 EtOAc-hexane) to give 35 mg (44%) N-(2.3. 4,6-tetra-O-acetyl- β -D-glucopyranosyl)-N'-(4-tert-butylbenzoyl)urea 3h, as the first fraction. Mp: 117-119 °C; $[\alpha]_D$ -39 (c 0.20, CHCl₃); ¹H NMR (CDCl₃, 360 MHz): δ (ppm) 9.48 (1H, d, J 8.9 Hz, NHCONHC-OAr), 9.00 (1H, s, NHCONHCOAr), 7.87 (2H, d, J 8.3 Hz, Ar), 7.51 (2H, d, J 8.3 Hz, Ar), 5.35 (1H, pseudo t, J 9.6, 9.9 Hz, H-3), 5.32 (1H, pseudo t, J 8.9, 9.6 Hz, H-1), 5.14 (1H, pseudo t, J 8.9, 9.9 Hz, H-4), 5.12 (1H, pseudo t, J 9.6, 9.9 Hz, H-2), 4.27 (1H, dd, J 4.0, 12.3 Hz, H-6), 4.07 (1H, dd, J 1.2, 12.3 Hz, H-6'), 3.81 (1H, ddd, J 1.2, 4.0, 8.9 Hz, H-5), 2.06, 2.04, 2.03 $(12H, 3s, 4 \times OCOCH3), 1.35 (9H, s, PhC(CH₃)₃); ¹³C$ NMR (CDCl₃, 90 MHz): δ (ppm) 170.6, 170.1, 169.8, 169.4, 167.3 (CO), 157.3 (NHCONH), 154.1, 128.8, 127.7, 125.8 (aromatics), 79.0 (C-1), 73.5, 73.0, 70.0, 68.0 (C-2–C-5), 61.6 (C-6), 35.1 (C(CH₃)₃), 31.0 $(C(CH_3)_3)$, 20.7, 20.6, 20.5 (OCOCH₃). Anal. Calcd for C₂₆H₃₄N₂O₁₁ (550.57): C, 56.72; H, 6.22; N, 5.09. Found: C, 56.38; H, 5.96; N, 5.17. The next fraction gave 8 mg (10%) of the title compound α -3h, as colourless crystals. Mp: 70–72 °C; $[\alpha]_D$ +88 (c 3.89, CHCl₃); ¹H NMR (CDCl₃, 360 MHz): δ (ppm) 10.16 (1H, s, NHCONHCOAr), 10.05 (1H, d, J 7.9 Hz, NHCONHC-OAr), 8.01 (2H, d, J 7.9 Hz, Ar), 7.56 (2H, d, J 7.9 Hz, Ar), 6.04 (1H, dd, J 5.3, 7.9 Hz, H-1), 5.43 (1H, pseudo t, J 9.6, 10.5 Hz, H-3), 5.23 (1H, dd, J 5.3, 10.5 Hz, H-2), 5.16 (1H, pseudo t, J 9.6, 9.6 Hz, H-4), 4.37 (1H, dd, J 1.8, 12.3 Hz, H-6), 4.04 (1H, dd, J 3.5, 12.3 Hz, H-6'), 4.00 (1H, ddd, J 1.8, 3.5, 9.6 Hz, H-5), 2.06, 2.05, 2.04 (12H, 3s, $4 \times OCOCH_3$), 1.37 (9H, s, $C(CH_3)_3$); ¹³C NMR (CDCl₃, 90 MHz): δ (ppm) 170.5, 169.8, 169.5, 169.4, 168.5 (CO), 157.5 (NHCONH), 154.9, 128.4, 127.9, 125.9 (aromatics), 75.1 (C-1), 70.2, 68.7, 68.3, 68.0 (C-2-C-5), 61.6 (C-6), 35.1 (C(CH₃)₃), 30.9 $(C(CH_3)_3)$, 20.5 $(OCOCH_3)$.

3.4.2. N-(2,3,4,6-Tetra-O-acetyl- β - and α -D-glucopyranosyl)-N'-(4-trifluoromethyl-benzoyl)urea (3i and α -3i). Prepared from 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosylamine²⁹ (5, 200 mg, 0.58 mmol) and 4-trifluoromethyl-benzamide (218 mg, 1.15 mmol) as described in

Section 3.4.1. Reaction time 5 h. Column chromatographic purification (1:5 EtOAc-hexane) gave as the first fraction 222 mg (69%) of N-(2,3,4,6-tetra-Oacetyl- β -D-glucopyranosyl)-N'-(4-trifluoromethyl-benzovl)urea (3i) as a white powder. Mp: 109-112 °C; $[\alpha]_D$ -37 (c 1.46, CHCl₃); ¹H NMR (CDCl₃, 360 MHz): δ (ppm) 10.16 (1H, s, NHCONHCOAr), 9.49 (1H, d, J 8.9 Hz, NHCONHCOAr), 8.15 (2H, d, J 8.0 Hz, Ar), 7.79 (2H, d, J 8.3 Hz, Ar), 5.38 (1H, pseudo t, J 9.2, 9.6 Hz, H-3), 5.27 (1H, t, J 8.9, 9.2 Hz, H-1), 5.17 (1H, t, J 9.2, 9.6 Hz, H-4), 5.12 (1H, t, J 9.2, 9.6 Hz, H-2), 4.25 (1H, dd, J 4.3, 12.6 Hz, H-6), 4.02 (1H, dd, J 2.2, 12.6 Hz, H-6'), 3.78 (1H, ddd, J 2.2, 4.3, 9.6 Hz, H-5), 2.06, 2.05, 2.04, 2.03 (12H, 4s, $4 \times OCOCH_3$). ¹³C NMR (CDCl₃, 90 MHz): δ (ppm) 170.5, 170.1, 169.9, 169.4, 166.9 (CO), 154.5 (NHCONH), 134.8 (q, J 32 Hz, CCF₃), 135.1, 128.7, 125.7 (aromatics), 123.4 (q, J 273 Hz, CF₃), 79.1 (C-1), 73.6, 72.8, 70.1, 68.1 (C-2– C-5), 61.6 (C-6), 20.5 (OCOCH₃). Anal. Calcd for $C_{23}H_{25}F_3N_2O_{11}$ (562.45): C, 49.12; H, 4.48; N, 4.98. Found: C, 49.33; H, 4.26; N, 4.58. The next fraction gave 28 mg (9%) of the title compound α -3i as a white powder. Mp: 155-158 °C; $[\alpha]_D$ +75 (c 0.84, CHCl₃); ¹H NMR (CDCl₃, 360 MHz): δ (ppm) 10.39 (1H, s, NHCON*H*-COAr), 9.87 (1H, d, J 7.9 Hz, NHCONHCOAr), 8.22 (2H, d, J 8.8 Hz, Ar), 7.83 (2H, d, J 8.8 Hz, Ar), 6.02 (1H, dd, J 5.3, 7.9 Hz, H-1), 5.41 (1H, pseudo t, J 9.6, 10.5 Hz, H-3), 5.22 (1H, dd, J 5.3, 10.5 Hz, H-2), 5.18 (1H, pseudo t, J 9.6, 9.6 Hz, H-4), 4.35 (1H, dd, J 3.5, 12.3 Hz, H-6), 4.01 (1H, dd, J 2.6, 12.3 Hz, H-6'), 3.97 (1H, ddd, J 2.6, 3.5, 9.6 Hz, H-5), 2.07, 2.06, 2.05 (12H, 3s, $4 \times OCOCH_3$); ¹³C NMR (CDCl₃, 90 MHz): δ (ppm) 170.6, 169.9, 169.5, 169.4, 167.5 (CO), 154.7 (NHCONH), 135.1 (q, J 34 Hz, CCF₃), 134.5, 128.6, 126.0 (aromatics), 123.2 (q, J 289 Hz, CF₃), 75.3 (C-1), 70.1, 68.7, 68.5, 67.9 (C-2–C-5), 61.4 (C-6), 20.6 (CH₃).

3.4.3. N-(2,3,4,6-Tetra-O-acetyl-β- and α-D-glucopyranosvl)-N'-(2-naphthovl)urea (3m and α -3m). To a soln of 2-naphthoyl-chloride (2.93 g, 15 mmol) in dry CHCl₃ (40 mL), anhydrous ZnCl₂ (160 mg, 1.20 mmol) and 2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl urea¹⁰ 2 g, 5.1 mmol) were added with stirring. The reaction mixture was refluxed until TLC (1:1 EtOAc-hexane) showed complete transformation of 1. Then, the reaction mixture was poured into ice-water and extracted with chloroform $(2\times)$. The organic phases were combined and washed with satd aq Na₂CO₃ soln and water. After drying, the solvent was evaporated and the residue was purified by column chromatography (1:2 EtOAchexane). The main product was 0.88 g (32%) N-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-N'-(2-naphthoyl)urea. Mp: 184–185 °C; $[\alpha]_D$ –64 (c 1.2, CHCl₃); ¹H NMR (CDCl₃ + Me₂SO- d_6 , 360 MHz): δ (ppm) 10.23 (1H, s, NHCONHCOAr), 9.65 (1H, d, J 8.5 Hz,

NHCONHCOAr), 8.57 (1H, s, Ar), 8.10-7.6 (6H, m unres., Ar), 5.34 (1H, pseudo t, J 9.1 Hz, H-1), 5.33, 5.16, 5.09 (3 \times 1H, 3 pseudo t, J 9.6 Hz, H-2-H-4), 4.17 (1H, dd, J 3.7, 12.6 Hz, H-6), 3.95 (1H, broad d, J 12.6 Hz, H-6'), 3.64 (1H, m unres., H-5), 2.03, 2.00 $(12H, 2s, 4 \times OCOCH_3)$; ¹³C NMR (CDCl₃ + Me₂SO d_6 , 90 MHz): δ (ppm) 170.54, 170.03, 169.74, 169.31, 168.11 (CO), 155.04 (NHCONH), 135.47, 132.24, 129.47, 129.25, 128.83, 128.69, 128.56, 127.76, 127.04, 123.79 (aromatics), 78.94 (C-1), 73.46, 72.95, 70.14, 67.99 (C-2-C-5), 61.47 (C-6), 20.53, 20.45 (OCOCH₃). Anal. Calcd for C₂₆H₂₈N₂O₁₁ (544.52): C, 57.35; H, 5.18; N, 5.14. Found: C, 57.38; H, 5.32; N, 5.17. We also isolated 0.03 g (1%) N-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)-N'-(2-naphthoyl)urea α -3m as a colourless oil. $R_f = 0.82$ (2:1 EtOAc-hexane); $[\alpha]_D$ +16 (c 0.96, CHCl₃); 1 H NMR (CDCl₃): δ (ppm) 10.57 (1H, s, CON-HCO), 10.18 (1H, d, J 6.8 Hz, NH), 8.77–8.75, 8.18– 7.93, 7.72-7.58 (10H, m, aromatics), 6.11 (1H, pseudo t, J 5.9, 6.8 Hz, H-1), 5.51 (1H, pseudo t, J 9.9, 9.9 Hz, H-4), 5.31 (1H, dd, J 9.6, 5.9 Hz, H-2), 5.23 (1H, pseudo t, J 9.9, 9.2 Hz, H-3), 4.40 (1H, dd, J 12.0, 3.4 Hz, H-6), 4.13 (1H, dd, J 12.0, 1.5 Hz, H-6'), 4.09 (1H, ddd, J 9.9, 3.4, 1.5 Hz, H-5), 2.14, 2.11, 2.10, 2.09 (4 × 3H, 4s, C H_3); ¹³C NMR (CDCl₃): δ (ppm) 171.2, 170.6, 169.9, 169.5, 168.9 (CO), 155.4 (NHCONH), 135.9, 135.7, 132.5, 129.6, 129.5, 128.9, 128.2, 127.8, 127.1, 123.6 (aromatics), 75.3 (C-1), 70.4, 68.7, 68.5, 68.2 (C-2-C-5), 61.2 (C-6), 20.6 (CH₃); ESIMS: m/z 567.09 ([M+Na]⁺).

3.4.4. β-D-Glucopyranosylammonium carbamate (8). D-Glucose (3.0 g, 17 mmol) was dissolved in dry MeOH (84 mL) and ammonium carbamate (5.2 g, 84 mmol) was added. The reaction mixture was stirred for 16 h at 37 °C, then stored at 0 °C for an hour. The product crystallized from the soln. After filtration, it was dried in a vacuum desiccator at ~60 mbar. Yield: 3.64 g (91%), mp: 124–126 °C; $[\alpha]_D$ +17 (*c* 1, water), lit. 23 $[\alpha]_D$ +5.3 (*c* 1, water). NMR data for H-1 and soln behaviour matched those reported. 23

3.4.5. *N*-(β-D-Glucopyranosyl)-*N*'-phenyl urea (9a). From 8 (0.10 g, 0.41 mmol) and phenyl isocyanate (50 μL, 0.41 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃–MeOH) to yield 0.07 g (60%) white crystalline product. Mp: 193–195 °C (lit. 30 mp: 223 °C dec); [α]_D –33 (c 0.42, Me₂SO) (lit. 30 [α]_D –55, water); ¹H NMR (D₂O): δ (ppm) 7.41–7.16 (5H, m, aromatics), 4.92 (1H, d, J 8.9 Hz, H-1), 3.89 (1H, dd, J 12.3, 2.2 Hz, H-6), 3.72 (1H, dd, J 12.3, 5.2 Hz, H-6'), 3.56 (1H, pseudo t, J 9.2, 8.9 Hz, H-3), 3.53 (1H, ddd, J 8.9, 5.2, 2.2 Hz, H-5), 3.41 (1H, t, J 8.9, 8.9 Hz, H-4), 3.41 (1H, pseudo t, J 9.2, 8.9 Hz, H-2); ¹³C NMR (Me₂SO- d_6): δ (ppm) 154.5 (NH*C*ONH), 137.8, 129.0, 128.3, 125.2, 123.8, 120.2

(aromatics), 80.7 (C-1), 78.1, 77.5, 72.9, 70.0 (C-2–C-5), 60.9 (C-6). Anal. Calcd for $C_{13}H_{18}N_2O_6$ (298.30): C, 52.35; H, 6.08; N, 9.39. Found: C, 52.15; H, 5.98; N, 9.56.

3.4.6. N-(β -D-Glucopyranosyl)-N'-(2-chlorophenyl)urea **(9b).** From **8** (0.16 g, 0.66 mmol) and 2-chlorophenyl isocyanate (0.10 g, 0.66 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃-MeOH) to yield 0.12 g (53%) yellowish crystalline product. Mp: 196–198 °C; $[\alpha]_D + 39$ (c 0.20, Me₂SO); ¹H NMR (D₂O/CD₃OD): δ (ppm) 7.77–7.75 (4H, m, aromatics), 5.17 (1H, d, J 9.3 Hz, H-1), 4.22 (1H, dd, J 11.9, 1.3 Hz, H-6), 4.05 (1H, dd, J 11.9, 5.3 Hz, H-6'), 3.85 (1H, t, J 10.6, 9.3 Hz, H-2), 3.80-3.55 (3H, m, H-3, H-4, H-5); 13 C NMR (D₂O/CD₃OD): δ (ppm): 160.4 (NHCONH), 137.2, 133.8, 130.3, 130.0, 129.8, 128.2 (aromatics), 82.3 (C-1), 78.3, 78.0, 73.3, 70.8 (C-2–C-5), 62.0 (C-6). Anal. Calcd for C₁₃H₁₇-ClN₂O₆ (332.74): C, 46.93; H, 5.15; N, 9.39. Found: C, 46.60; H, 4.98; N, 9.56.

3.4.7. N-(β -D-Glucopyranosyl)-N-(3-chlorophenyl)urea (9c). From 8 (0.16 g, 0.67 mmol) and 3-chlorophenyl isocyanate (0.10 g, 0.67 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃-MeOH) to yield 0.09 g (42%) white crystalline product. Mp: 203–205 °C; $[\alpha]_D$ –18 (c 0.10, Me₂SO); ¹H NMR (CD₃OD): δ (ppm) 8.65 (1H, s, NH), 7.66– 7.26 (4H, m, aromatics), 7.03 (1H, d, J 6.6 Hz NH), 4.79 (1H, pseudo t, J 9.2, 6.6 Hz, H-1), 3.83 (1H, dd, J 11.9, 2.6 Hz, H-6), 3.62 (1H, dd, J 11.9, 2.8 Hz, H-6'), 3.44–3.27 (4H, m, H-2, H-3, H-4, H-5); ¹³C NMR (CD₃OD): δ (ppm): 157.6 (NHCONH), 142.1, 135.4, 131.1, 126.7, 121.1, 118.2 (aromatics), 82.5 (C-1), 79.4, 78.9, 74.1, 71.5 (C-2-C-5), 62.8 (C-6). Anal. Calcd for $C_{13}H_{17}CIN_2O_6$ (332.74): C, 46.93; H, 5.15; N, 9.39. Found: C, 46.68; H, 5.08; N, 9.49.

N-(β-D-Glucopyranosyl)-N'-(4-chlorophenyl)urea **(9d).** From **8** (0.16 g, 0.66 mmol) and 4-chlorophenyl isocyanate (0.10 g, 0.66 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃-MeOH) to yield 0.12 g (54%) white crystalline product. Mp: 240–242 °C; $[\alpha]_D$ +23 (c 0.28, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 8.69 (1H, s, NH), 7.42 (2H, d, J 8.0 Hz, aromatics), 7.28 (2H, d, J 8.0 Hz, aromatics), 6.71 (1H, d, J 9.2 Hz, NH), 5.06–5.05 (2H, m, OH), 4.92 (1H, d, J 8.9 Hz, OH), 4.65 (1H, pseudo t, J 9.2, 8.0 Hz, H-1), 4.52 (1H, s, OH), 3.62 (1H, dd, J 11.9, 4.0 Hz, H-6), 3.19 (1H, dd, J 11.9, 1.3 Hz, H-6'). 3.10-2.93 (4H, m, H-2, H-3, H-4, H-5); ¹³C NMR (Me_2SO-d_6) : δ (ppm) 154.4 (NHCONH), 138.9, 135.5, 128.5, 128.1, 124.9, 119.3 (aromatics), 80.6 (C-1), 78.2, 77.5, 72.8, 69.9 (C-2-C-5), 60.9 (C-6). Anal. Calcd for C₁₃H₁₇ClN₂O₆ (332.74): C, 46.93; H, 5.15; N, 9.39. Found: C, 46.75; H, 4.92; N, 9.15.

N-(β-D-Glucopyranosyl)-N'-(2-fluorophenyl)urea 3.4.9. (9e). From 8 (0.18 g, 0.75 mmol) and 2-fluorophenyl isocyanate (0.10 g, 0.75 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃-MeOH) to yield 0.18 g (76%) white crystalline product. Mp: 199–201 °C; $[\alpha]_D$ –10 (c 0.20, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 8.51 (1H, s, NH), 8.08–6.93 (4H, m, aromatics), 7.38 (1H, d, J 9.2 Hz, NH), 5.14–5.10 (2H, m, OH, H-1), 5.00 (1H, t, J 5.3, 5.3 Hz, OH), 4.64 (1H, pseudo t, J 6.6, 5.3 Hz, OH), 3.61 (1H, dd, J 11.9, 5.3 Hz, H-6), 3.20 (1H, dd, J 11.9, 1.3 Hz, H-6'), 3.15–3.00 (3H, m, H-2, H-3, H-5), 2.95 (1H, t, J 9.3, 9.3 Hz, H-4); ¹³C NMR: (Me₂SO d_6): δ (ppm) 154.4 (NHCONH), 151.8 (d, CF, J 242.4 Hz), 127.9, 124.4, 122.1, 120.5, 115.0 (aromatics), 80.7 (C-1), 78.2, 77.6, 73.0, 69.9 (C-2-C-5), 60.9 (C-6). Anal. Calcd for C₁₃H₁₇FN₂O₆ (316.29): C, 49.37; H, 5.42; N, 8.86. Found: C, 49.20; H, 5.58; N, 8.56.

3.4.10. N-(β-D-Glucopyranosyl)-N'-(4-bromophenyl)urea (9g). From 8 (0.14 g, 0.58 mmol) and 4-bromophenyl isocyanate (0.11 g, 0.58 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃-MeOH) to yield 0.15 g (70%) white crystalline product. Mp: 187–189 °C; $[\alpha]_D$ +27 (c 0.20, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 8.62 (1H, s, NH), 7.43 (2H, d, J 7.9 Hz, aromatics), 7.31 (2H, d, J 7.9 Hz, aromatics), 6.82 (1H, d, J 9.2 Hz, NH), 5.11–5.06 (2H, m, OH), 4.95 (1H, d, J 8.9 Hz, OH), 4.70 (1H, pseudo t, J 9.2, 9.2 Hz, H-1), 4.52 (1H, s, OH), 3.54 (1H, dd, J 11.8, 4.0 Hz, H-6), 3.22 (1H, dd, J 11.9, 1.3 Hz, H-6'), 3.15-2.93 (4H, m, H-2, H-3, H-4, H-5); ¹³C NMR (Me_2SO-d_6) : δ (ppm) 154.5 (NHCONH), 131.9, 131.5, 126.8, 125.6, 122.3, 118.7 (aromatics), 80.6 (C-1), 78.0, 77.3, 72.5, 69.8 (C-2-C-5), 61.1 (C-6). Anal. Calcd for C₁₃H₁₇BrN₂O₆ (377.19): C, 41.40; H, 4.54; N, 7.43. Found: C, 41.12; H, 5.68; N, 7.56.

3.4.11. *N*-(β-D-Glucopyranosyl)-*N*'-(4-nitrophenyl)urea (9h). From 8 (0.05 g, 0.21 mmol) and 4-nitrophenyl isocyanate (0.035 g, 0.21 mmol) according to General procedure **I**. Purified by column chromatography (2:1 CHCl₃–MeOH) to yield 0.05 g (76%) white crystalline product. Mp: 169–171 °C; [α]_D –44 (c 0.21, Me₂SO); ¹H NMR (D₂O): δ (ppm) 8.03 (2H, d, J 9.3 Hz, aromatics), 7.40 (2H, d, J 9.3 Hz, aromatics), 4.87 (1H, d, J 9.3 Hz, H-1), 3.83 (1H, dd, J 11.9, 1.3 Hz, H-6), 3.67 (1H, dd, J 11.9, 5.3 Hz, H-6'), 3.65–3.39 (4H, m, H-2, H-3, H-4, H-5); ¹³C NMR (D₂O): δ (ppm) 156.9 (NHCONH), 145.6, 142.8, 125.8, 125.1, 123.4, 119.3 (aromatics), 81.4 (C-1), 77.9, 77.2, 72.5, 69.9 (C-2–C-5), 61.2 (C-6). Anal. Calcd for C₁₃H₁₇N₃O₈ (343.30): C, 45.48; H, 4.99; N, 12.24. Found: C, 45.18; H, 5.18; N, 12.36.

3.4.12. N-(β -D-Glucopyranosyl)-N'-(4-methoxyphenyl)**urea (9i).** From **8** (0.10 g, 0.42 mmol) and 4-methoxyphenyl isocyanate (60 µL, 0.46 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃-MeOH) to yield 0.09 g (63%) white crystalline product. Mp: 192–194 °C; $[\alpha]_D$ +14 (c 0.16, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 8.43 (1H, s, NH), 7.30 (2H, d, J 9.2 Hz, aromatics), 6.74 (2H, d, J 9.2 Hz, aromatics), 6.78 (1H, d, J 9.3 Hz, NH), 5.04 (1H, d, J 8.9 Hz, OH), 4.92 (1H, d, J 8.9 Hz, OH), 4.65 (1H, pseudo t, J 9.2, 8.9 Hz, OH), 4.52 (1H, pseudo t, J 9.2, 8.9 Hz, OH), 3.69 (4H, m, OCH₃, H-1), 3.61 (1H, dd, J 11.9, 3.0 Hz, H-6), 3.38 (1H, dd, J 11.9, 1.3 Hz, H-6'), 3.21 (1H, pseudo t, J 10.6, 9.3 Hz, H-2), 3.09-2.92 (3H, m, H-3, H-4, H-5); ¹³C NMR (Me₂SO d_6): δ (ppm) 154.7 (NHCONH), 154.1, 133.1, 119.8, 119.5, 115.6, 113.3 (aromatics), 80.8 (C-1), 78.1, 77.6, 72.9, 69.9 (C-2–C-5), 60.9 (C-6), 55.1 (OCH₃). Anal. Calcd for C₁₄H₂₀N₂O₇ (328.32): C, 51.22; H, 6.14; N, 8.53. Found: C, 51.02; H, 6.48; N, 8.68.

N-(β -D-Glucopyranosyl)-N-(3-trifluoromethyl-3.4.13. **phenyl)urea (9j).** From **8** (0.12 g, 0.50 mmol) and 3-trifluoromethylphenyl isocyanate (0.09 g, 0.50 mmol) according to General procedure I. Purified by column chromatography (4:1 CHCl₃-MeOH) to yield 0.08 g (46%) white crystalline product. Mp: 189–191 °C; $[\alpha]_D$ +17 (c 0.21, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 7.95 (1H, s, NH), 7.57-7.20 (4H, m, aromatics), 7.28 (1H, d, J 9.3 Hz, NH), 5.12–5.04 (2H, m, OH), 4.68 (1H, t, J 9.3, 9.3 Hz, H-1), 4.62 (1H, s, OH), 4.19 (1H, d, J 8.9 Hz, OH), 3.99 (1H, dd, J 12.1, 2.3 Hz, H-6), 3.58 (1H, dd, J 12.1, 4.0 Hz, H-6'), 3.21–2.96 (4H, m, H-2, H-3, H-4, H-5); 13 C NMR (Me₂SO- d_6): δ (ppm): 154.8 (NHCONH), 141.2, 129.5, 129.4 (q, C-CF₃ J 31.7 Hz), 124.9 (2), 121.1 (aromatics), 117.3 (q, CF₃ J 265.3 Hz), 80.6 (C-1), 78.3, 77.6, 72.8, 69.9 (C-2-C-5), 60.8 (C-6). Anal. Calcd for C₁₄H₁₇F₃N₂O₆ (366.30): C, 45.91; H, 4.68; N, 7.65. Found: C, 45.51; H, 4.58; N, 7.36.

3.4.14. N-(β -D-Glucopyranosyl)-N'-(3-cyanophenyl)urea (91). From 8 (0.1 g, 0.83 mmol) and 3-cyanophenyl isocyanate (0.12 g, 0.83 mmol) according to General procedure I. Purified by column chromatography (4:1 CHCl₃-MeOH) to yield 0.12 g (45%) white crystalline product. Mp: 219–221 °C; $[\alpha]_D + 1$ (c 0.21, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 8.50 (1H, s, NH), 7.35– 6.78 (4H, m, aromatics), 6.61 (1H, d, J 9.3 Hz, NH), 5.03 (1H, d, J 8.9 Hz, OH), 4.89 (1H, d, J 8.9 Hz, OH), 4.67 (1H, pseudo t, J 9.2, 8.9 Hz, OH), 4.51 (1H, pseudo t, J 9.2, 8.9 Hz, OH), 3.61 (1H, dd, J 11.9, 2.3 Hz, H-6), 3.42 (1H, dd, J 11.9, 2.3 Hz, H-6'), 3.33 (1H, t, J 9.3, 9.3 Hz, H-1), 3.20 (1H, pseudo t, J 10.6, 9.3 Hz, H-2), 3.10-3.02 (2H, m, H-3, H-5), 2.96 (1H, t, J 9.3, 9.3 Hz, H-4); 13 C NMR (Me₂SO- d_6): δ (ppm) 154.5 (NHCONH), 133.6, 132.7, 119.4, 119.2, 113.9,

113.7 (aromatics), 110.5 (*CN*), 80.7 (C-1), 78.0, 77.5, 72.8, 69.9 (C-2–C-5), 60.8 (C-6). Anal. Calcd for $C_{14}H_{17}N_3O_6$ (323.31): C, 52.01; H, 5.30; N, 13.00. Found: C, 51.90; H, 5.28; N, 13.26.

3.4.15. N-(β -D-Glucopyranosyl)-N-(1-naphthyl)urea (9m). From 8 (0.05 g, 0.21 mmol) and 1-naphthyl isocyanate (35 µL, 0.21 mmol) according to General procedure I. Purified by column chromatography (4:1 CHCl₃-MeOH) to yield 0.03 g (45%) mildly brown crystalline product. Mp: 220–222 °C; $[\alpha]_D$ –24 (c 0.20, Me₂SO); ¹H NMR (Me₂SO- d_6 + D₂O): δ (ppm) 8.00– 7.41 (7H, m, aromatics), 4.70 (1H, d, J 8.9 Hz, H-1), 3.66 (1H, dd, J 12.3, 1.5 Hz, H-6), 3.43 (1H, dd, J 12.3, 4.0 Hz, H-6'), 3.26 (1H, pseudo t, J 9.6, 8.9 Hz, H-3), 3.21 (1H, ddd, J 8.9, 4.0, 1.5 Hz, H-5), 3.12 (1H, t, J 8.9, 8.9 Hz, H-4), 3.07 (1H, pseudo t, J 9.6, 8.9 Hz, H-2); ¹³C NMR (Me₂SO- d_6 + D₂O): δ (ppm) 154.8 (NHCONH), 134.6, 133.6, 128.4, 125.8, 125.7, 125.5, 125.4, 122.3, 121.1, 116.4 (aromatics), 80.8 (C-1), 78.1, 77.5, 73.1, 69.9 (C-2-C-5), 60.9 (C-6). Anal. Calcd for C₁₇H₂₀N₂O₆ (348.36): C, 58.61; H, 5.79; N, 8.04. Found: C, 58.40; H, 5.58; N, 8.26.

3.4.16. N-(β -D-Glucopyranosyl)-N'-(2-naphthyl)urea (9n). From 8 (0.17 g, 0.69 mmol) and 2-naphthyl isocyanate (0.11 g, 0.69 mmol) according to General procedure I. Purified by column chromatography (2:1 CHCl₃-MeOH) to yield 0.10 g (42%) mildly brown crystalline product. Mp: 238–239 °C; $[\alpha]_D$ –24 (c 0.20, Me₂SO); ¹H NMR (Me₂SO- d_6 + D₂O): δ (ppm) 7.92– 7.30 (7H, m, aromatics), 4.70 (1H, d, J 9.2 Hz, H-1), 3.67 (1H, dd, J 12.3, 1.9 Hz, H-6), 3.44 (1H, dd, J 12.3, 5.5 Hz, H-6'), 3.28 (1H, pseudo t, J 9.2, 8.9 Hz, H-3), 3.22 (1H, ddd, J 8.9, 5.5, 1.9 Hz, H-5), 3.10 (1H, t, J 8.9, 8.9 Hz, H-4), 3.09 (1H, pseudo t, J 9.2, 8.9 Hz, H-2); 13 C NMR (CDCl₃): δ (ppm) 154.6 (NHCONH), 137.6, 133.7, 128.9, 128.3, 127.4, 126.8, 126.2, 123.7, 119.4, 113.0 (aromatics), 80.8 (C-1), 78.2, 77.6, 72.9, 70.0 (C-2-C-5), 60.9 (C-6). Anal. Calcd for C₁₇H₂₀N₂O₆ (348.36): C, 58.61; H, 5.79; N, 8.04. Found: C, 58.55; H, 5.66; N, 8.06.

3.4.17. *N*-(β-D-Glucopyranosyl)-*N*'-(2-naphthoyl)urea (90). From 8 (0.13 g, 0.54 mmol) and 2-naphthoyl isocyanate (0.11 g, 0.54 mmol) according to General procedure **I**. Purified by column chromatography (2:1 CHCl₃–MeOH) to yield 0.10 g (60%) white crystalline product. Mp: 213–214 °C; [α]_D +6.5 (c 0.18, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 11.02 (1H, s, NH), 9.15 (1H, d, J 9.5 Hz, NH), 8.2–7.5 (7H, m, aromatics), 4.84 (1H, pseudo t, J 9.5, 8.6 Hz, H-1), 4.01–3.08 (10H, m, 4 × O*H*, H-2, H-3, H-4, H-5, H-6, H-6'); ¹³C NMR (Me₂SO- d_6) δ (ppm) 168.5 (NH*C*OAr), 153.5 (NH*C*ONH), 134.7, 134.6, 132.1, 130.0, 129.6, 129.4, 129.2, 127.8, 127.6, 126.5 (aromatics), 80.3 (C-1), 78.6,

77.3, 73.2, 69.70 (C-2–C-5), 60.8 (C-6). Anal. Calcd for C₁₃H₁₈N₂O₆ (298.30): C, 52.35; H, 6.08; N, 9.39. Found: C, 52.55; H, 6.26; N, 9.16.

3.4.18. N-(\beta-D-Glucopyranosyl)-N'-(4-tert-butylbenzoyl)**urea (9p).** From **8** (0.68 g, 2.80 mmol) and 4-*tert*-butylbenzoyl isocyanate (0.28 g, 1.40 mmol) according to General procedure I. Purified by column chromatography (9:1 CHCl₃–MeOH) to yield 0.10 g (19%) pale yellowish oil, R_f 0.08, CHCl₃-MeOH, 9:1; $[\alpha]_D$ -31 (c 0.16, Me₂SO); ¹H NMR (Me₂SO- d_6): δ (ppm) 10.78 (1H, s, NH), 9.14 (1H, d, J 9.2 Hz, NH), 7.92 (2H, d, J 9.2 Hz, aromatics), 7.53 (2H, d, J 9.2 Hz, aromatics), 5.25 (1H, d, J 5.3 Hz, OH), 5.02 (1H, d, J 4.0 Hz, OH), 4.94 (1H, d, J 5.3 Hz, OH), 4.82 (1H, t, J 9.2, 9.2 Hz, H-1), 4.52 (1H, t, J 5.3, 5.3 Hz, OH), 3.65 (1H, dd, J 11.9, 5.3 Hz, H-6), 3.46 (1H, dd, J 11.9, 2.6 Hz, H-6'), 3.32-3.01 (4H, m, H-2, H-3, H-4, H-5), 1.30 (9H, s, $C(CH_3)_3$); ¹³C NMR (Me₂SO- d_6): δ (ppm) 168.2 (NHCOAr) 156.0 (NHCONH), 153.5, 129.5, 128.0 (2), 125.3 (2) (aromatics), 80.2 (C-1), 78.5, 77.2, 73.1, 69.7 (C-2–C-5), 62.8 (C-6), 34.7 (C(CH₃)₃), 30.7 $(C(CH_3)_3)$. Anal. Calcd for $C_{18}H_{26}N_2O_7$ (382.42): C, 56.54; H, 6.85; N, 7.33. Found: C, 56.40; H, 6.18; N, 7.26.

3.4.19. N-(β -D-Glucopyranosyl)-N-phenyl thiourea (10a). From 12a (0.13 g, 0.27 mmol) according to General procedure III. Yield: 0.07 g (86%) pale yellow crystals. Mp: 119–121 °C (lit. 30 mp: 121 °C), $[\alpha]_D$ –24 (c 0.23, water); ¹H NMR (D₂O): δ (ppm) 7.48–7.24 (5H, m. aromatics), 5.50 (1H, d, J 9.2 Hz, H-1), 3.85 (1H, dd, J 11.9, 1.0 Hz, H-6), 3.70 (1H, dd, J 11.9, 6.6 Hz, H-6'), 3.51 (1H, ddd, J 9.2, 6.6, 1.0 Hz, H-5), 3.54, 3.40, 3.37 (3 \times 1H, 3 \times pseudo t, J 9.2, 9.2 Hz, H-2, H-3, H-4); 13 C NMR (D₂O): δ (ppm) 182.9 (CS), 130.2 (2), 129.2, 128.3 (2), 127.0 (aromatics), 84.6 (C-1), 77.9, 77.1, 72.5, 69.7 (C-2-C-5), 61.1 (C-6). Anal. Calcd for C₁₃H₁₈N₂O₅S (314.36): C, 49.67; H, 5.77; N, 8.91; S, 10.20. Found: C, 49.22; H, 5.95; N, 8.45; S, 10.33.

3.4.20. *N*-(β-D-Glucopyranosyl)-*N*'-(2-chlorophenyl)thiourea (10b). From 8 (0.20 g, 0.80 mmol) and 2-chlorophenyl isothiocyanate (0.13 mL, 1.04 mmol) or from 13b (0.23 g, 0.44 mmol) according to General procedures **I** and **III**, respectively. Purified by column chromatography (1:1 CHCl₃–MeOH). Yield: 0.29 g (64%) from 8 or 0.07 g (20%) from 12b pale yellow crystals. Mp: 165–167 °C; [α]_D +71 (c 0.05, Me₂SO); ¹H NMR (CD₃OD): δ (ppm) 7.36–7.19 (4H, m, aromatics), 5.37 (1H, d, J 9.2 Hz, H-1), 4.33 (1H, dd, J 11.9, 1.0 Hz, H-6), 4.18 (1H, dd, J 11.9, 6.6 Hz, H-6'), 3.56 (1H, ddd, J 9.2, 6.6, 1.0 Hz H-5), 3.44 (1H, pseudo t, J 9.2, 9.2 Hz, H-2), 3.35–3.30 (2H, m, H-3, H-4); ¹³C NMR (CD₃OD): δ (ppm) 173.6 (*C*S), 130.7 (2), 130.5, 129.1, 128.2 (2)

(aromatics), 91.4 (C-1), 78.6, 76.5, 73.9, 71.8 (C-2–C-5), 68.4 (C-6). Anal. Calcd for $C_{13}H_{17}ClN_2O_5$ (348.81): C, 40.77; H, 4.91; N, 8.03; S, 9.19. Found: C, 40.55; H, 5.18; N, 8.21; S, 9.01.

3.4.21. N-(β -D-Glucopyranosyl)-N-(4-fluorophenyl)thio**urea (10f).** From **8** (0.20 g, 0.80 mmol) and 4-fluorophenyl isothiocyanate (0.12 mL, 0.82 mmol) or from 12f (0.15 g, 0.30 mmol) according to General procedures I and III, respectively. Purified by column chromatography (4:1 CHCl₃-MeOH). Yield: 0.13 g (20%) from 8 or 0.09 g (97%) from 12f yellow crystalline product. Mp: 120-122 °C; $[\alpha]_D -182$ (c 0.08, water); ¹H NMR (D₂O): δ (ppm) 7.26 (d, 2H, J 7.9 Hz, aromatics), 7.14 (d, 2H, J 7.9 Hz, aromatics), 5.49 (1H, d, J 9.2 Hz, H-1), 3.84 (1H, dd, J 11.9, 1.0 Hz, H-6), 3.81 (1H, dd, J 11.9, 5.3 Hz, H-6'), 3.70 (1H, ddd, J 9.2, 5.3, 1.0 Hz H-5), 3.67 (1H, pseudo t, J 9.2, 9.2 Hz H-2), 3.54–3.48 (2H, m, H-3, H-4); 13 C NMR (D₂O): δ (ppm) 182.2 (CS), 162.0 (d, CF, J 245.3 Hz), 129.3 (2) 116.9, 116.7, 111.9 (aromatics), 78.0 (C-1), 77.9, 77.1, 72.6, 69.8 (C-2-C-5), 61.2 (C-6). Anal. Calcd for C₁₃H₁₇FN₂O₅S (332.35): C, 46.98; H, 5.16; N, 8.43; S, 9.65. Found: C, 46.75; H, 5.38; N, 8.31; S, 9.45.

3.4.22. N-(β -D-Glucopyranosyl)-N-(4-methoxyphenyl)thiourea (10i). From 12i (0.81 g, 1.58 mmol) according to General procedure III. Purified by column chromatography (1:1 CHCl₃-MeOH) to yield 0.23 g (44%) pale yellow crystalline product. Mp: 119–121 °C; $[\alpha]_D$ –109 $(c \ 0.24, \text{ water}); \ ^{1}\text{H } \text{ NMR } (D_{2}\text{O}); \ \delta \text{ (ppm) } 7.15 \text{ (d, 2H, }$ J 7.9 Hz, aromatics), 6.89 (d, 2H, J 7.9 Hz, aromatics), 5.48 (1H, d, J 9.2 Hz, H-1), 3.82 (1H, dd, J 11.9, 1.0 Hz, H-6), 3.67 (1H, dd, J 11.9, 5.3 Hz, H-6'), 3.47 (1H, ddd, J 9.2, 5.3, 1.0 Hz H-5), 3.52 (1H, pseudo t, J 9.2, 9.2 Hz, H-2), 3.41–3.39 (2H, m, H-3, H-4); ¹³C NMR (D₂O): δ (ppm) 180.2 (CS), 128.5 (3), 127.6, 115.2 (2) (aromatics), 83.1 (C-1), 77.9, 77.1, 72.6, 69.8 (C-2-C-5), 61.2 (C-6) 56.1 (OCH₃). Anal. Calcd for C₁₄H₂₀N₂O₆S (344.39): C, 48.83; H, 5.85; N, 8.13; S, 9.31. Found: C, 48.62; H, 5.58; N, 8.26; S, 9.05.

3.4.23. *N*-(β-D-Glucopyranosyl)-*N*'-(4-trifluoromethylphenyl)thiourea (10k). From 12k (0.15 g, 0.26 mmol) according to General procedure III. Purified by column chromatography (1:1 CHCl₃–MeOH) to yield 0.10 g (98%) pale yellow crystalline product. Mp: 190–192 °C; [α]_D –57 (c 0.14, water); ¹H NMR (D₂O): δ (ppm) 7.90 (2H, d, J 7.9 Hz, ArH), 7.70 (2H, d, J 7.9 Hz, ArH), 5.22 (1H, d, J 9.2 Hz, H-1), 3.83 (1H, dd, J 13.2, 1.5 Hz, H-6), 3.66 (1H, dd, J 13.2, 4.0 Hz, H-6'), 3.48–3.37 (4H, m, H-2, H-3, H-4, H-5); ¹³C NMR (D₂O): δ (ppm) 174.7 (CS), 140.3, 132.3 (q, J 31.9 Hz, CCF₃), 129.6 (2), 125.7 (2) (aromatics), 124.5 (q, J 272.9 Hz CF₃), 82.7 (C-1), 73.9, 72.7, 70.3, 68.1 (C-2–C-5), 61.5 (C-6). Anal. Calcd for C₁₄H₁₇F₃N₂O₅S

(382.36): C, 43.98; H, 4.48; N, 7.33; S, 8.39. Found: C, 43.75; H, 4.38; N, 7.51; S, 8.45.

N-(β-D-Glucopyranosyl)-N'-phenyl selenourea 3.4.24. (11). β-D-Glucopyranosylammonium carbamate was suspended in dry pyridine (0.20 g, 0.83 mmol/ 8 mL) containing molecular sieves (3 Å). To the suspension (0.15 g, 0.83 mmol), phenyl-isoselenocyanate was added and the mixture was stirred at rt in the dark for 1 day under argon atmosphere (TLC, 4:1 CHCl₃-MeOH). Then, the mixture was filtered over a Celite pad and the solvent evaporated. The crude product was purified by column chromatography (4:1 CHCl₃-MeOH) to yield 0.15 g (65%) red oil, R_f 0.84 (1:1 CHCl₃–MeOH); $[\alpha]_D$ –23 (*c* 0.022, Me₂SO) (lit. 28 [α]_D -19 (c 1.4, MeOH)); 1 H NMR (D₂O): δ (ppm) 7.43–7.23 (4H, d, J 7.9 Hz, ArH), 5.59 (1H, d, J 9.2 Hz, H-1), 3.83 (1H, dd, J 11.9, 1.0 Hz, H-6), 3.79 (1H, dd, J 11.9, 6.6 Hz, H-6') 3.69-3.36 (4H, m, H-2, H-3, H-4, H-5); 13 C NMR (D₂O): δ (ppm) 181.6 (CSe), 149.7, 133.1, 129.5, 127.8, 126.2, 125.1 (aromatics), 87.5 (C-1), 78.1, 77.2, 72.5, 69.8 (C-2-C-5), 61.2 (C-6). ESIMS: m/z 385.03 ([M+Na]⁺), C₁₃H₁₈N₂NaO₅Se.

3.4.25. N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-N'-phenyl thiourea (12a). From 5 (0.50 g, 1.44 mmol) and phenyl isothiocyanate (0.26 mL, 1.5 equiv) according to General procedure II. Purified by column chromatography (1:1 EtOAc-hexane) to yield 0.47 g (68%) white crystalline product. Mp: 131–133 °C (lit.²⁹ mp: $135 \,^{\circ}$ C), $[\alpha]_{D}$ -19 (c 0.31, CHCl₃); ¹H NMR (CDCl₃): δ (ppm) 9.08 (1H, s, NH), 7.48–7.18 (5H, m, aromatics), 6.90 (1H, d, J 6.6 Hz, NH), 5.86 (1H, pseudo t, J 9.2, 9.2 Hz), 5.35 (1H, pseudo t, J 10.5, 9.2 Hz), 5.03 (1H, pseudo t, J 10.5, 9.2 Hz), 4.95 (1H, pseudo t, J 9.2, 9.2 Hz), (H-1, H-2, H-3, H-4), 4.32 (1H, dd, J 13.2, 4.0 Hz, H-6), 4.08 (1H, dd, J 13.2, 1.2 Hz, H-6'), 3.86 (1H, ddd, J 9.2, 4.0, 1.2 Hz, H-5), 2.06, 2.04, 2.01, 1.99 (4 × 3H, 4s, CH₃); 13 C NMR (CDCl₃): δ (ppm) 181.7 (CS), 170.5, 170.5, 169.6, 169.4 (CO), 135.6, 129.5, 129.5, 127.1, 124.9, 124.9, (aromatics), 82.5 (C-1), 73.1, 72.5, 70.1, 67.9 (C-2–C-5), 61.4 (C-6), 20.4, 20.3 (3) (CH₃). Anal. Calcd for C₂₁H₂₆N₂O₉S (482.51): C, 52.28; H, 5.43; N, 5.81; S, 6.65. Found: C, 52.20; H, 5.35; N, 5.90; S, 6.71.

3.4.26. *N*-(**2,3,4,6-Tetra**-*O*-acetyl-β-D-glucopyranosyl)-*N*'-(**2-chlorophenyl)thiourea** (**12b**). From **5** (0.50 g, 1.44 mmol) and 2-chlorophenyl isothiocyanate (0.37 mL, 1.5 equiv) according to General procedure **II**. Purified by column chromatography (2:3 EtOAchexane) to yield 0.59 g (79%) white crystalline product. Mp: 144–146 °C; [α]_D +48, (c 0.31, CHCl₃); ¹H NMR (CDCl₃): δ (ppm) 8.14 (1H, s, NH), 7.51–7.23 (4H, m, aromatics), 6.71 (1H, d, J 9.2 Hz, NH), 5.76 (1H, t, J

9.2, 9.2 Hz), 5.35 (1H, pseudo t, J 10.5, 9.2 Hz), 5.05 (1H, t, J 10.5, 9.2 Hz), 4.90 (1H, t, J 9.2, 9.2 Hz), (H-1, H-2, H-3, H-4), 4.33 (1H, dd, J 13.2, 4.0 Hz, H-6), 4.10 (1H, dd, J 13.2, 1.2 Hz, H-6'), 3.87 (1H, ddd, J 9.2, 4.0, 1.2 Hz, H-5), 2.06, 2.05, 2.03, 2.00 (4 × 3H, 4s, CH₃); ¹³C NMR (CDCl₃): δ (ppm) 182.5 (CS), 171.1, 170.6, 169.8, 169.6 (CO), 132.8, 130.5, 130.4, 129.1, 128.1, 128.0 (aromatics), 83.1 (C-1), 73.5, 72.5, 70.4, 68.2 (C-2–C-5), 61.6 (C-6), 20.7, 20.6, 20.5 (2) (CH₃). Anal. Calcd for C₂₁H₂₅ClN₂O₉S (516.96): C, 48.79; H, 4.87; N, 5.42; S, 6.20. Found: C, 48.65; H, 5.02; N, 5.22; S, 6.07.

3.4.27. N-(2,3,4,6-Tetra-O-acetyl- β -D-glucopranosyl)-N'-(4-fluorophenyl)thiourea (12f). From 5 (0.50 g.1.44 mmol) and 4-fluorophenyl isothiocvanate (0.22 mL, 2.16 mmol) according to General procedure II. Purified by column chromatography (1:1 EtOAchexane) to yield 0.67 g (92%) white crystalline product. Mp: 191-193 °C; $[\alpha]_D$ +18 (c 0.29, CHCl₃); ¹H NMR (CDCl₃): δ (ppm) 8.63 (1H, s, NH), 7.20 (2H, d, J 7.9 Hz, aromatics), 7.12 (2H, d, J 7.9 Hz, aromatics), 6.68 (1H, d, J 9.2 Hz, NH), 5.81 (1H, t, J 9.2, 9.2 Hz), 5.36 (1H, t, J 9.2, 9.2 Hz), 5.06 (1H, t, J 9.2, 9.2 Hz), 4.93 (1H, t, J 9.2, 9.2 Hz), (H-1, H-2, H-3, H-4), 4.32 (1H, dd, J 11.9, 4.0 Hz, H-6), 4.09 (1H, dd, J 11.9, 1.5 Hz, H-6'), 3.86 (1H, ddd, J 9.2, 4.0, 1.5 Hz, H-5), 2.07, 2.03, 2.01 (2) $(4 \times 3H, 4s, CH_3)$; ¹³C NMR (CDCl₃): δ (ppm) 182.2 (CS), 170.9, 170.6, 169.7, 169.4 (CO), 162.0 (d, CF, J 246.1 Hz), 132.1, 127.8, 127.6, 116.7, 116.5 (aromatics), 82.9 (C-1), 73.5, 72.4, 70.4, 68.1 (C-2–C-5), 61.5 (C-6), 20.6 (2), 20.4 (2) (CH₃). Anal. Calcd for C₂₁H₂₅FN₂O₉S (500.50): C, 50.40; H, 5.03; N, 5.60; S, 6.41. Found: C, 50.15; H, 5.33; N, 5.36; S, 6.17.

3.4.28. N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-N'-(4-trifluoromethyl-phenyl)thiourea (12k). From 5 (1.00 g, 2.88 mmol) and 4-trifluoromethylphenyl isothiocyanate (0.46 mL, 2.88 mmol) according to General procedure II. Purified by column chromatography (1:1 EtOAc-hexane) to yield 1.81 g (80%) white crystalline product. Mp: 112–114 °C; $[\alpha]_D$ +32 (c 0.15, CHCl₃); ¹H NMR (CDCl₃): δ (ppm) 11.08 (1H, d, J 9.2 Hz, NH), 9.21 (1H, s, NH), 7.99 (2H, d, J 7.9 Hz, aromatics), 7.78 (2H, d, J 7.9 Hz, aromatics), 5.78 (1H, pseudo t, J 9.2, 9.2 Hz), 5.39 (1H, pseudo t, J 10.6, 9.2 Hz), 5.20 (1H, pseudo t, J 10.6, 9.2 Hz), 5.13 (1H, t, J 9.2, 9.2 Hz), (H-1, H-2, H-3, H-4), 4.32 (1H, dd, J 13.2, 5.3 Hz, H-6), 4.14 (1H, dd, J 13.2, 1.2 Hz, H-6'), 3.87 (1H, ddd, J 9.2, 5.3, 1.2 Hz, H-5), 2.07, 2.04, 2.03, 1.99 ($4 \times 3H$, 4s, CH₃); 13 C NMR (CDCl₃): δ (ppm) 182.4 (CS), 170.6, 170.1, 170.0, 169.9 (CO), 134.8 (q, C-CF₃, J 31.7 Hz), 128.2 (2), 126.1 (2), 121.7 (aromatics), 123.2 (q, CF₃, J 272.9 Hz), 77.8 (C-1), 77.8, 77.2, 72.9, 69.9 (C-2-C-5), 61.2 (C-6), 20.7, 20.5 (3) (CH₃). Anal. Calcd for C₂₂H₂₅F₃ N₂O₉S (550.51): C, 48.00; H, 4.58; N, 5.09; S, 5.82. Found: C, 48.22; H, 4.78; N, 5.36; S, 5.47.

3.4.29. N-(2.3.4.6-Tetra-O-acetyl-B-D-glucopyranosyl)-N'-(4-methoxy-phenyl)thiourea (12i). From 5 (1.00 g, 2.88 mmol) and 4-methoxy-phenylisocyanate (0.33 mL, 4.32 mmol) according to General procedure II. Purified by column chromatography (1:1 EtOAc-hexane) to yield 0.81 g (57%) colourless oil, R_f 0.27 (1:1 EtOAchexane); $[\alpha]_D + 14$ (c 0.19, CHCl₃); ¹H NMR (CDCl₃): δ (ppm) 8.65 (1H, s, NH), 7.12 (2H, d, J 7.9 Hz, aromatics), 6.93 (2H, d, J 7.9 Hz, aromatics), 6.57 (1H, d, J 9.2 Hz, NH), 5.83 (1H, pseudo t, J 9.2, 9.2 Hz), 5.34 (1H, pseudo t, J 9.2, 9.2 Hz), 5.02 (1H, pseudo t, J 9.2, 9.2 Hz), 4.91 (1H, pseudo t, J 9.2, 9.2 Hz), (H-1, H-2, H-3, H-4), 4.30 (1H, dd, J 11.9, 4.0 Hz, H-6), 4.10 (1H, dd, J 11.9, 2.4 Hz, H-6'), 3.84–3.80 (4H, m, H-5, OCH₃), 2.05, 2.04, 2.02, 1.99 ($4 \times 3H$, 4s, CH₃); ¹³C NMR (CDCl₃): δ (ppm) 182.1 (CS), 171.0, 170.5, 169.6, 169.4 (CO), 127.3 (3), 126.7, 114.8 (2) (aromatics), 82.8 (C-1), 73.3, 72.5, 70.3, 68.0 (C-2-C-5), 60.2 (C-6), 55.3 (OCH₃), 20.8, 20.4, 20.3 (2) (CH₃). Anal. Calcd for C₂₂H₂₈N₂O₁₀S (512.54): C, 51.56; H, 5.51; N, 5.47; S, 6.26. Found: C, 51.35; H, 5.19; N, 5.28; S, 6.09.

Acknowledgement

Financial support for this work was provided by the Hungarian Scientific Research Fund (OTKA 46081 and 61336).

References

- Somsák, L.; Nagy, V.; Hadady, Z.; Docsa, T.; Gergely, P. Curr. Pharm. Design 2003, 9, 1177–1189.
- Somsák, L.; Nagy, V.; Hadady, Z.; Felföldi, N.; Docsa, T.; Gergely, P. In Frontiers in Medicinal Chemistry; Reitz, A. B., Kordik, C. P., Choudhary, M. I., Rahman, A. u., Eds.; Bentham, 2005; pp 253–272.
- Oikonomakos, N. G. Curr. Protein Pept. Sci. 2002, 3, 561–586.
- Watson, K. A.; Mitchell, E. P.; Johnson, L. N.; Cruciani, G.; Son, J. C.; Bichard, C. J. F.; Fleet, G. W. J.; Oikonomakos, N. G.; Kontou, M.; Zographos, S. E. Acta Crystallogr., Sect. D 1995, 51, 458–472.
- Oikonomakos, N. G.; Kosmopolou, M.; Zographos, S. E.; Leonidas, D. D.; Somsák, L.; Nagy, V.; Praly, J.-P.; Docsa, T.; Tóth, B.; Gergely, P. Eur. J. Biochem. 2002, 269, 1684–1696.
- Györgydeák, Z.; Hadady, Z.; Felföldi, N.; Krakomperger, A.; Nagy, V.; Tóth, M.; Brunyánszky, A.; Docsa, T.; Gergely, P.; Somsák, L. *Bioorg. Med. Chem.* 2004, 12, 4861–4870.
- Nagy, V.; Felföldi, N.; Praly, J.-P.; Docsa, T.; Gergely, P.; Chrysina, E. D.; Tiraidis, C.; Alexacou, K. M.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos, N. G.; Somsák, L., in preparation.

- Chrysina, E. D.; Nagy, V.; Felföldi, N.; Telepó, K.; Praly, J.-P.; Docsa, T.; Gergely, P.; Alexacou, K. M.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos, N. G.; Somsák, L., in preparation.
- 9. Helferich, B.; Kosche, W. Chem. Ber. 1926, 59, 69-79.
- Pintér, I.; Kovács, J.; Tóth, G. Carbohydr. Res. 1995, 273, 99–108.
- Deng, M. Z.; Caubere, P.; Senet, J. P.; Lecolier, S. Tetrahedron 1988, 44, 6079–6086.
- Ichikawa, Y.; Matsukawa, Y.; Nishiyama, T.; Isobe, M. Eur. J. Org. Chem. 2004, 586–591.
- 13. Paulsen, H.; Pflughaupt, K. W. In *The Carbohydrates Chemistry and Biochemistry*; Pigman, W., Horton, D., Eds.; Academic Press: New York, 1980; pp 881–927.
- Helm, R. F.; Karchesy, J. J. J. Carbohydr. Chem. 1993, 12, 277–290.
- Bianchi, A.; Ferrario, D.; Bernardi, A. Carbohydr. Res. 2006, 341, 1438–1446.
- Benito, J. M.; Ortiz Mellet, C.; Sadalapure, K.; Lindhorst, T. K.; Defaye, J.; Garcia Fernandez, J. M. Carbohydr. Res. 1999, 320, 37–48.
- 17. Azad, S.; Kumamoto, K.; Uegaki, K.; Ichikawa, Y.; Kotsuki, H. Tetrahedron Lett. 2006, 47, 587–590.
- Isbell, H. S.; Frush, H. L. J. Org. Chem. 1958, 23, 1309– 1319.

- 19. Plusquellec, D.; Roulleau, F.; Lefeuvre, M.; Brown, E. *Tetrahedron* **1990**, *46*, 465–474.
- Garcia Fernandez, J. M.; Ortiz Mellet, C.; Perez, V. M. D.; Blanco, J. L. J.; Fuentes, J. *Tetrahedron* 1996, 52, 12947–12970.
- Likhosherstov, L. M.; Novikova, O. S.; Derevitskaja, V. A.; Kochetkov, N. K. Carbohydr. Res. 1986, 146, C1–C5
- Lubineau, A.; Auge, J.; Drouillat, B. Carbohydr. Res. 1995, 266, 211–219.
- Likhosherstov, L. M.; Novikova, O. S.; Shibaev, V. N. Dokl. Chem. 2002, 383, 89–92.
- Likhosherstov, L. M.; Novikova, O. S.; Shibaev, V. N. Dokl. Chem. 2003, 389, 73–76.
- Hackenberger, C. P. R.; O'Reilly, M. K.; Imperiali, B. J. Org. Chem. 2005, 70, 3574–3578.
- Likhosherstov, L. M.; Novikova, O. S.; Zheltova, A. O.;
 Shibaev, V. N. Russ. Chem. Bull. 2004, 53, 709–713.
- Speziale, A. J.; Smith, L. R.; Fedder, J. E. J. Org. Chem. 1965, 30, 4306–4307.
- 28. Fernandez-Bolanos, J. G.; Lopez, O.; Ulgar, V.; Maya, I.; Fuentes, J. *Tetrahedron Lett.* **2004**, *45*, 4081–4084.
- 29. Helferich, B.; Mitrowsky, A. Chem. Ber. 1952, 85, 1-8.
- 30. Goodman, I. Adv. Carbohydr. Chem. 1958, 13, 215-236